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The collisional flow of a slightly inelastic granular material down a rough inclined
plane is usually described by kinetic theories. We present an experimental study
aimed at analysing the assumptions and the quantitative predictions of such theories.
A two-dimensional channel coupled to a model granular material and image analysis
allow detailed and complete measurement of the kinematics and structure of the
flows. We determine the range of inclination and particle flux for which the flow is
stationary and uniform. The characteristic profiles of solid fraction, mean velocity and
granular temperature are systematically measured. Both the true collisional and the
dilute kinetic regimes are examined. We show that a quasi-hydrodynamic description
of these regimes seems relevant, and that the pressure and the viscosity terms are in
good qualitative agreement with the prediction of the kinetic theory. The profiles are
well described by the kinetic theory near the top of the flow, at low solid fraction.
Conversely there are large discrepancies near the rough plane, where the material is
structured in layers.

1. Introduction
The formulation of constitutive laws for a granular flow is still an active field

of research. According to the nature of the flow regime (frictional or collisional),
several formulations have been suggested. If the granular medium is dense and slowly
sheared, the particles have persistent contacts and dissipate energy by friction. The
forces between particles have a static origin and the constitutive law is ‘plastic’-
like (Brown & Richards 1970; Nedderman 1992). On the other hand, if the flow is
dilute and highly sheared, the particles interact collisionally, which dissipates a part
of their kinetic energy. In this case, the constitutive laws may be deduced from a
microstructural approach, similar to the kinetic theory for dense gas (Campbell 1990).

During the last two decades kinetic theory has been continually improved (Savage
& Jeffrey 1981; Jenkins & Savage 1983; Lun et al. 1984; Jenkins & Richman 1985;
Lun 1991). This theory has the great advantage of linking the macroscopic behaviour
of the granular medium to local interactions between particles. Inside a real granular
medium, those local interactions are very complex. That is why the theoretical models
consider model granular media, usually spheres or disks with uniform diameters. In
this case, it is possible to describe the interactions of contact between the particles
by simple models. When a granular medium is highly sheared, the collisions generate
a fluctuating component of the velocity of the particles, measured by the granular
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temperature. But unlike a gas, inelastic collisions between the particles have a direct
effect on the value of the granular temperature.

The kinetic theory supplies a unique formalism to derive both the balance laws
and the constitutive relations for the collisional, slightly inelastic granular flows. The
expression for the stress tensor depends on the solid fraction, the granular temperature
and their gradients (Lun et al. 1984; Jenkins & Richman 1985), in accordance with the
arguments of Bagnold (1954). Besides, an equation for energy, representing the balance
of the modes of production, conduction and dissipation of granular temperature, has
been established (Jenkins & Savage 1983). It involves the flux of fluctuation kinetic
energy and the rate of energy dissipation.

In order to examine the validity of this theory, several numerical simulations have
been performed using the molecular dynamics method. However, those simulations
essentially deal with uniform plane shear geometry; their results cannot be directly
generalized to more complex geometries. They have improved our knowledge of
the dependence of the stress tensor on solid fraction and granular temperature
(Campbell & Brennen 1985; Campbell & Gong 1986; Walton & Braun 1986a; Lun
& Bent 1994). They have also helped to highlight the importance of the anisotropy
of granular temperature, which was not initially taken into account in the theories
(Campbell & Brennen 1985; Campbell & Gong 1986; Walton & Braun 1986b),
and specify the effects of particle rotation (Campbell 1989), boundary conditions
(Campbell 1993; Louge 1994), and the development of structure in granular media
(Campbell & Brennen 1985; Campbell 1986; Zhang & Campbell 1992; Savage &
Dai 1993).

Experimental studies devoted to the collisional regime have been less numerous
than numerical studies. The wide heterogeneity of experimental set-ups and measure-
ment techniques complicates the interpretation of the results (Ishida & Shirai 1979;
Savage 1979; Johnson, Nott & Jackson 1990; Ahn, Brennen & Sabersky 1991). More-
over, the development of microstructural theories, like kinetic theory, has represented
a new challenge to the experimentalists. The main assumptions on which they are
founded can be proved only by a detailed study of the kinematics and structure of the
flows. Unfortunately, the current state of experimental technique does not allow us to
measure the contact forces between the particles, limiting our knowledge of the energy
dissipation features inside the flows. Simply measuring the granular temperature, a
basic quantity in the collisional regime, raises a big problem. It is impossible to deter-
mine the particle velocity inside a three-dimensional flow because inserting a probe
seriously disturbs the measurement. For this reason, the measurements are usually
performed at the wall, like in the study by Ahn et al. (1991). But most of the recent
experimental studies do not present any measurements of granular temperature. To
avoid the experimental difficulties encountered in the case of a three-dimensional flow,
Drake (1991) proposed using a two-dimensional geometry where the particles are con-
fined to just one layer. This geometry is well suited to an analysis of the microstructure
of the flows. In this way, he was able to measure the kinematics of the flows, filming
the particle motion with a high speed camera, and presented profiles of solid fraction,
mean velocity and granular temperature. However, no detailed comparison between
experimental results and kinetic theory predictions was carried out.

The aim of this article is to test some aspects of the kinetic theory of granular
materials with an experiment involving granular flows down an inclined plane. Our
approach is very similar to Drake’s: we have built a two-dimensional channel and used
a rapid visualization technique. We have developed automatic analysis of the pictures,
which gives rapid quantitative measurements and permits the study of very varied
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Diameter, D (mm) 3
Mass density, ρp (kg m−3) 7.8× 103

Normal restitution coefficient, e 0.95
Friction coefficient, µ 0.2

Table 1. Geometrical and physical properties of the steel beads.

dynamical phenomena. The profiles of solid fraction, mean velocity and granular
temperature have been systematically measured, and compared with the predictions
of the kinetic theory. Complementary results may be found in Azanza, Chevoir &
Moucheront (1997) and Azanza (1998).

Section 2 of this paper is devoted to a detailed presentation of the experimental
set-up. Section 3 explains the predictions of the kinetic theory for a granular flow
down an inclined plane, and especially the stress tensor expression. Sections 4 and 5
present comparisons between experimental results and theoretical predictions for the
collisional and the dilute kinetic regimes.

2. Experimental set-up
In this Section, the experimental techniques will be presented. In particular, the

order of magnitude of the extraneous effects that may disturb the interpretation of
experimental results, such as the sidewall friction, will be examined.

2.1. Description

2.1.1. Characterization of the granular medium

The experiments were carried out with monodisperse metallic beads whose diameter
D is equal to 3 mm. The tolerances on the diameter and on sphericity are very good
because these beads are used as ball bearings in industry. In order to study the
collisional regime and discuss the validity of kinetic theories, we have used steel
beads, i.e. a low dissipative material which favours the collisional regime. The bead
properties are shown in table 1. The restitution coefficient of the bead has been
measured on the one hand from the study of the impacts of the beads on a marble
table and on the other hand from binary collisions between beads inside the channel.
In both cases, the restitution coefficient is equal to 0.95± 0.03 and remains constant
throughout the velocity range considered (velocity less than 1 m s−1, and larger than
a few cm s−1). The friction coefficient has not been measured, and its value has been
taken from Bowden & Tabor (1950).

2.1.2. The channel

The channel consists of two glass walls, 2 m long, 20 cm deep and 1 cm thick
(figure 1). The gap between the walls is regulated with precision wedges in order to
confine the material to only one bead layer. This gap must be slightly larger than the
bead diameter to avoid any locking, but small enough to preserve the two-dimensional
feature of the experiment. The inclination range (θ) of the channel varies from 0◦ to
40◦ with respect to the horizontal. A two-dimensional hopper feeds the channel. The
feeding particle flux (Q) is controlled by changing the aperture and its value cannot
exceed 1800 particles per second. The tank is situated 17 cm above the channel bed
so that the particles acquire initial velocity. The beads accelerate on a smooth bottom
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Figure 1. Two-dimensional channel.

about 50 cm long and then bump onto a rough bed which disorganizes them and
slows them down.

Two kinds of rough beds have been used. The first one is made up of beads similar
to the flowing ones. They are firmly stuck on a steel bar in a layer of Araldite glue
which comes up to half their height. Once dry, this glue is very hard and the beads are
well fixed. The spacing between the beads is not constant; it varies from 0 to 1.7 radii
in order to make sure that a bead in the flow cannot touch the glue layer. This rough
bed is characterized by an effective bed roughness X (defined as the ratio of the
length of the stuck beads placed end-to-end to the total length of the bed) of 0.78,
equivalent to a mean distance between the beads of 0.29 diameter. The second rough
bed was obtained by machining a steel bar to a jagged profile. The characteristic size
of the roughness is not constant but its order of magnitude always remains slightly
larger than a bead diameter.

2.1.3. Image acquisition

The flows are filmed with a high speed digital 8 bit camera (Dalsa CAD4), at a
rate of 230 images per second. The filmed area is located about 30 cm upstream from
the channel outlet and its size is about 4 cm. It is lit by a stroboscope synchronized
with the camera clock, whose flashes have a mean duration of 10 µs in order to
obtain sharp images, without the fuzziness due to the particle motion. To obtain very
contrasted images, the stroboscope is placed just in front of the camera (ombroscopy).
Moreover, a light diffuser located on the glass wall of the channel makes the lighting
uniform and improves the quality of the images. The images from the camera are
stored temporarily in the RAM of the computer via a video card linked to a rapid
acquisition module (AMDIG, 16 MHz). The digital film, corresponding to 6 s of flow,
is then stored in the hard disk.

2.1.4. Processing of digital images

The digital images are then analysed to obtain the main quantities of the flow,
such as the solid fraction ν, mean velocity u and granular temperature T , defined
as T = 1/d〈C2〉, with C being the fluctuating component of the velocity and d the
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Figure 2. Picture of the flow with the double-flash lighting method.

dimension of the space. Introducing characteristic length D, velocity (gD cos θ)1/2 (see
§ 3) and time (D/g)1/2, we will often use dimensionless quantities in the following,
indicated by the ∗:

y∗ = y/D, (2.1)

u∗ = u/(gDcos θ)1/2, (2.2)

T ∗ = T/gDcos θ. (2.3)

The image processing method depends on the measurement of the temperature
and requires the greatest care. Measuring granular temperature involves knowing
the instantaneous velocity of the particles, i.e. the velocity between two collisions.
This velocity is calculated from successive particle positions. In order to make sure
that there is no collision between these two positions, we have to take care that
the sampling time of the positions τs is smaller than the mean time between two
successive collisions τcol . The sampling time τs is given by the acquisition rate of the
camera and rises to 4.3× 10−3 s. The mean time between two successive collisions is
τcol = `/T 1/2, where ` is the mean free path of the particles. Consequently, the largest

granular temperature Tl which can be measured is Tl =
(
`/τs

)2
. In fully developed

collisional flows, we will see in § 4 that the order of magnitude of the dimensionless
granular temperature is about 1. In such flows, the mean free path is well estimated
by the mean distance between the particles

` = D
(
(νm/ν)

1/2 − 1
)
, (2.4)

with νm the random close packing solid fraction (νm = 0.82 in two dimensions).
As a result, the measurement of the granular temperature is no longer valid for

solid fraction larger than 0.5. In order to ensure accurate measurement of the granular
temperature at solid fractions as high as 0.7, the sampling time τs must be reduced by
a factor 4 (an alternative would be to use larger particles). We modified the working
of the stroboscope so that it delivers two successive flashes instead of one during the
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Figure 3. Experimental errors: (a) average velocity u∗, (b) granular temperature T ∗ (θ = 23◦,
Q ' 1100 particles per second, stuck-bead bed roughness).

integration time of the camera. The two successive positions of each particle thus
appear on the same image (figure 2). These positions are more or less close and may
partially overlap according to the time interval between the two flashes. Since the first
and second flashes have different intensities, the direction of the particle displacement
is known. The double flash lighting method is thus convenient for measuring granular
temperature in the collisional flows.

Thanks to double flash images, it is easy to find the position and the velocity
of each particle by image processing. Note that it is not possible to measure the
particle rotation. A multiple threshold is applied to separate the successive positions
of the particles. Since the two flashes have different intensities, these positions exhibit
distinct grey levels and the overlapped areas appear deep grey. Then it is possible to
reconstitute two binary images, the first one with the initial positions of the beads
(deep and median grey levels) and the second one with the final positions (light
and median grey levels). The centre of mass of each particle is then calculated. The
precision on the determination of the centre of mass depends on the size of the
particle diameter in pixels. Since this diameter is about 20 pixels, the error made is
less than one pixel. Depending on camera resolution (256 × 256 pixels), the size of
the recorded images is about 13 bead diameters. The small displacement of the beads
between two flashes makes it possible to calculate their velocity without ambiguity.
However, the beads which move in or out of the filmed area have an undetermined
velocity. That is why a margin of one diameter is systematically applied on the sides
of the images to exclude these questionable cases.

From the bead velocities, the mean kinetic energy of the particles is calculated and
the analysis of its variation during the 6 s of the film allows us to define the range
of stationary flow, if it exists. We consider that the flow is in a steady state if the
variations of the kinetic energy do not exceed 10% of its mean value. With a view
to determining the profiles of the mean quantities describing the flow in the direction
normal to the channel bed, namely the solid fraction, mean velocity and granular
temperature, the images are divided into layers 1 bead diameter wide, parallel to the
bed channel, inside which the averages are calculated. The solid fraction is defined as
the ratio of the apparent bead surface inside the layer to the total layer surface. The
velocity and granular temperature are calculated with the beads whose centre of mass
is inside the layer. These quantities are also averaged over time during the maximum
time of steady-state flow (this time is at least 3 s). Each measurement set thus
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corresponds to more than 1000 different positions. Figure 3 shows the experimental
uncertainties, associated with image processing and statistical processing of data. This
last error is the most significant one. It is negligible for the solid fraction. Conversely,
it affects the mean velocity and granular temperature profiles to a greater extent. The
error in the velocity is less than 5%, except in the upper part of the flows where it
reaches 10%. As for the error on the granular temperature, it is 10% higher at the
channel bed and reaches 35% when the solid fraction is very low and the particle
number on which the average is performed is less than 500. The error bars will not
be shown any more in the following.

This averaging process is only valid if the flows are uniform (or fully developed)
in the direction parallel to the plane. This uniformity is checked by filming areas
situated at different distances upstream from the channel outlet and comparing the
profiles with the ones determined in the region situated at 30 cm from the outlet.
The flows are considered to be uniform when the discrepancies between the profiles
are restricted to a few percent. In the following, this condition is checked in regions
located less than 50 cm upstream of the channel outlet.

2.2. Extraneous effects

In addition to contact interaction (friction and inelastic collisions), the particles can
undergo aerodynamic and electrostatic effects. Besides, the walls which confine the
material may generate some perturbations. Most microstructural theories do not take
these effects into account. It is therefore essential to estimate their order of magnitude
before comparing the experimental results with the predictions of the theories.

2.2.1. Aerodynamic and electrostatic effects

Let us estimate the order of magnitude of the aerodynamic force Fa exerted on
the beads by the air and compare it to the driving force of the particles, their weight
P . Consider an unfavourable case in which the beads move through immobile air
with a velocity V equal to 1 m s−1. The Reynolds number is of the order of 100,
so that the viscous friction force expression, assuming that the particles are isolated,
is Fa = 1

8
CvπρfD

2V 2, with Cv a characteristic coefficient depending on the material
shape whose value is close to 0.5 in this case, and ρf the mass density of the air. The
non-dimensional ratio Ra, defined

Ra =
P

Fa
=

4Dρpg

3CvρfV 2
, (2.5)

being equal to 470, the viscous forces exerted on the beads are negligible with regard
to the driving force of the particles. Moreover the hindering effect of the other
particles should lower the viscous force, so that this estimation is an over-estimate.

In addition to aerodynamic effects, the beads can undergo electrostatic effects.
The collisions between the steel particles and the glass walls induce electric charge
transfers which may accumulate locally on the surfaces. The order of magnitude
of the charge transferred in such collision is Qc = 10−13 C (Lowell & Rose-Innes
1980). From Appendix A, the frequency of collisions with the wall is of the order
of (g/D)1/2 (around 50 s−1). Consequently, during an experimental flow which lasts
around 10 s, the maximum charge which can accumulate on a bead (Qm) is less than
10−10 C. Moreover, this electric charge does not accumulate on the bead but diffuses
inside the granular flow because of the collisions between the metallic particles, and
disappears at the metallic bed. This diffusion process is regulated by two mean free
paths. The first one (`w) is associated with the collisions with the wall (of the order
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of D), and the second one (`) is associated with the collisions between grains, and
quantified by (2.4). Then in a layer of height H , the maximum charge is of the order
Qm = Qc

(
H2/` `w

)
. For H = 10D and a solid fraction less than 0.7, this gives roughly

the same estimation as before. Those two values are smaller than the maximum
electrostatic charge estimated from the ionization field of the air (3 MV−1), which
rises to 10−9 C for beads 3 mm in diameter.

Using Coulomb’s law, let us now estimate the force of repulsion Fe which acts
between two beads carrying the same charge Qm separated by a distance of about one
diameter: Fe = Q2

m/4πε0D
2, with ε0 = 8.85 10−12 F m−1 the permeability of a vacuum

(the correction due to influence effects is less than 4%). The comparison with the
weight defines the non-dimensional ratio Re

Re =
P

Fe
=

2π2ε0D
5ρpg

3Q2
m

. (2.6)

The previous estimation gives a ratio Re of the order of 100. As a matter of fact, we
have never noticed any macroscopic manifestations of electrostatic effects during the
experiments. In the following, we will assume that the aerodynamic and electrostatic
forces do not disturb the flows and we systematically neglect them.

2.2.2. Wall influence

Few studies have been devoted to the influence of the walls on granular flow in a
channel (Savage 1979; Drake 1991; Ahn et al. 1991; Hanes et al. 1997) even though
the most commonly used experimental techniques do not allow measurements to be
taken inside the material, because the insertion of a probe is a perturbation factor.
The only information accessible is situated on the walls and cannot be interpreted
before an estimation of generated perturbations.

We have focused special attention on the design of the channel in order to minimize
this influence. A tightening system reduces the bending of the glass plates and improves
their parallelism. Moreover, the glass planes present flatness characteristics higher than
the average and their thickness (1 cm) contributes to their rigidity. The extra gap σ
between the walls is controlled with precision metal bars and it is set to approximately
0.05 mm.

In fact, in our two-dimensional geometry, the beads do not flow strictly in a plane,
they suffer off-centre collisions and collide with the walls.

Measuring the velocity before and after a collision, we first calculated the effective
restitution coefficient between the particles themselves and between the particles and
the rough bed for various extra gaps, and observed no appreciable variation.

However figure 4 shows a strong influence of the spacing on the profiles of solid
fraction and velocity. For a given inclination of 21◦ and particle flux of 1400 particles
per second, the extra gap between the walls was varied between σ = 0.05 mm and
σ = 0.2 mm. The flows remain truly collisional, and no wedging effect is observed
during the experiment. However, the larger the gap, the slower and denser is the flow.
For extra gaps greater than 0.2 mm, the profiles are not shown since the flows stop.
We made sure that the flows were reproducible.

In Appendix A we estimate the average friction force exerted by the walls on a
bead

Ff = m(1 + ew) (1 + e)2 µw
σ

D
gT ∗ t, (2.7)

where t is the unit vector pointing in the opposite direction to the mean velocity flow,
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Figure 4. Influence of the spacing between the walls (s = 0.05 mm ( e), s = 0.1 mm (�) and s = 0.15
mm (4)): (a) profile of solid fraction ν, (b) profile of velocity u∗ (θ = 21◦, Q ' 1400 particles per
second, stuck-bead bed roughness).

and ew and µw are respectively the restitution coefficient between the beads and the
glass walls and the friction coefficient at the wall. Consequently, we may define the
effective gravity acting on the particles geff = g+Ff/m, which makes an angle ψ with
the vertical

ψ = (1 + ew)(1 + e)2µw
s

D
T ∗. (2.8)

Thus an increase in the extra gap corresponds to a reduction in the plane inclination.
Taking e = ew = 0.95, µw = 0.2, σ = 0.1 mm, D = 3 mm and T ∗ = 1, we find an angle
ψ = 2.9◦.

This simple model may partly explain the order of magnitude of the observed
variations of the solid fraction and velocity profiles.

3. Kinetic theory
Collisional flows are usually modelled with the kinetic theory (Campbell 1990).

The great advantage of this theory is that it links the macroscopic behaviour of the
granular medium with the particle-scale interactions between its constituents. From
simple interaction models, an appropriate averaging processing gives access to the
constitutive law.

Let us consider the two-dimensional problem of a set of identical disks (or spheres)
of diameter D, mass density ρp and mass m, flowing down a plane inclined at an
angle θ with respect to the horizontal. The particles are subjected to a driving force
F associated with their weight mg. We assume that the flows are steady state and
uniform in the direction of the plane (Ox), so that the solid fraction ν, the mean
velocity in the direction of the flow u and the granular temperature T only depend
on the height above the channel bed y. Following these assumptions, the momentum
balance equation (projected along (Ox) and (Oy)) and the energy equation take the
form (Ahn, Brennen & Sabersky 1992)

ρpνgcos θ +
dΣyy
dy

= 0, (3.1)
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ρpνgsin θ − dΣxy
dy

= 0, (3.2)

Σxy
du

dy
+

dqy
dy

+ γ = 0. (3.3)

The continuity equation is automatically satisfied. Σyy and Σxy are respectively the
normal and shear stress, qy is the component normal to the plane of the flux of
fluctuation kinetic energy and γ is the rate of energy dissipation. Their expressions
depend on the details of the kinetic theory considered. In the following, we will
consider the system of equations established by Jenkins & Richman (1985) to describe
the dynamics of monodisperse, slightly inelastic and smooth disks (no rotation is
considered). This theory makes the following assumptions:

collisions are binary and instantaneous;
the pre- and post-collision velocities of the particles are not correlated (molecular

chaos);
the kinematic collision model is simple (Newton’s coefficient of normal restitution);
the granular medium is close to equilibrium (the single-particle distribution function

is quasi-Maxwellian);
the gradient of the main quantities is small;
the energy dissipated by collisions is small (the coefficient of normal restitution is

close to 1 and the friction coefficient is negligible).
On the basis of these assumptions, the normal and shear stresses, the flux of fluctu-

ation kinetic energy and the rate of energy dissipation are derived from Boltzmann’s
equation (Jenkins & Richman 1985):

Σyy = ρpf1(ν)T , (3.4)

Σxy = ρpDf2(ν)T
1/2 du

dy
, (3.5)

qy = −ρpD
(
f3(ν)T

1/2 dT

dy
+ f4(ν)T

3/2 dν

dy

)
, (3.6)

γ =
ρp

D
f5(ν)T

3/2. (3.7)

The functions fi(ν) are given in Appendix B. They depend on the radial distribu-
tion function at contact g0(ν), which is defined in Appendix C. By measuring the
correlations of the positions in an assembly of particles, the radial distribution func-
tion quantifies the structure of a disordered medium. Its value at contact g0(ν) is a
measurement of the density of contacting particles in the assembly, and allows the
calculation of the collision rate between the particles. For low solid fractions, g0 tends
to 1, it increases with the solid fraction, and diverges close to the maximum allowable
solid fraction. In two-dimension geometry, an expression has been given by Verlet &
Levesque (1982):

gVL0 (ν) =
16− 7ν

16(1− ν)2
. (3.8)

The functions fi and g0 diverge when the solid fraction reaches 1, a value without
physical meaning, instead of at the maximum packing value (νm = 0.82). For this
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reason, Ahn et al. (1992) used another expression for g0 which diverges at νm:

gνm0 (ν) =
1

1− (ν/νm)1/2
. (3.9)

On the other hand, these functions are finite in the neighbourhood of ν = 0. As in
a gas, the pressure, deduced from (3.4), is proportional to the temperature, and the
viscosity, deduced from (3.5), is proportional to the square root of the temperature.
The flux of fluctuation kinetic energy is the sum of a term similar to Fourier’s law and
a term which takes into account the solid fraction gradient (which has an uncertain
physical origin). The normal and shear stresses and the flux of fluctuation kinetic
energy are the sum of two terms:

a collisional contribution, which takes the transfer of momentum and fluctuant
kinetic energy during collisions into account, and which is significant for high solid
fractions;

a kinetic contribution, which takes the transfer of momentum and fluctuant kinetic
energy transfer between two collisions into account, and which is significant for low
solid fractions.

Let us write the balance equations (3.1), (3.2) and (3.3) in the way of Ahn et al.
(1992). Combining (3.1) and (3.2) and assuming that the pressure and shear stress
vanish at infinity, we obtain

Σyy

Σxy
= − tan θ. (3.10)

Using the expressions (3.4)–(3.7) for Σyy , Σxy , qy and γ in (3.1), (3.3) and (3.10), and
taking the non-dimensional form for y, u and T , (3.1) and (3.10) become

dν

dy∗
= − 1

f′1T ∗

(
ν + f1

dT ∗

dy∗

)
, (3.11)

du∗

dy∗
= tan θF(ν)T ∗1/2, (3.12)

with F(ν) = f1/f2 and f′1 = df1/dν. Using the expressions dν/dy∗ and du∗/dy∗
obtained in (3.11) and (3.12), the energy balance (3.3) becomes

d2T ∗

dy∗2
= F1(ν)

[
F2(ν)T

∗ +
1

T ∗

(
F3(ν)

(
dT ∗

dy∗

)2

+ F4(ν)
dT ∗

dy∗
+ F5(ν)

)]
. (3.13)

The functions Fi are the combination of the products of functions fi with their
derivatives. Their expressions are given in Appendix B.

The variations of the solid fraction and of the granular temperature are linked by
the system (3.11) and (3.13). Equation (3.12) quantifies how the granular temperature
is generated by the velocity gradient. If we put this relation in the expressions for
pressure (3.4) and shear stress (3.5), we recognize the famous law established by
Bagnold (1954), which states the dependence of the normal and shear stresses on the
square of the velocity gradient. We emphasize that there are only two parameters in
this model: the restitution coefficient e, and the radial distribution function at contact
g0(ν).
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Figure 5. (Particle flux Q, inclination angle θ) diagram of stationary and uniform flow
(stuck-bead bed roughness).

4. Collisional regime
4.1. Experimental diagram and characteristic profiles

Figure 5 shows a diagram of the flow on the stuck bead bed. The status of a flow
(steady state, accelerating or stopped) is deduced from the evolution of the kinetic
energy of the particles measured during the flow. The inclination has been varied
between 18◦ and 27◦ in steps of 1◦, and the particle flux has been varied between
300 and 1800 in steps of 300 particles per second. Below a threshold angle, which
slightly depends on the particle flux (19◦ for particle fluxes less than 1000 particles per
second), the flows are not steady state and stop. A decrease of the inclination by 3◦ is
enough to stop the flow. This sensitivity to the inclination is consistent with the model
describing the influence of the walls at the end of § 2.2.2. For angles higher than this
threshold angle, flows are collisional in their upper region and dense close to the rough
bed, where the solid fraction is higher than 0.6. Moreover, we observe that the bead
bed generates a certain local order (structuration in layers) in the first layers (Azanza
1998). In this dense region, the assumptions of the kinetic theory (binary collisions,
molecular chaos) may be inappropriate. For angles greater than 21◦, the flows are
fully collisional and the dense lower area disappears. They become very rapid and
continuously accelerated for angles greater than 25◦. The same regimes are observed
for flows on the jagged bed, but the threshold angle increases from 19◦ to 23◦.

The solid fraction, velocity and granular temperature profiles have special features
in the collisional regime (figure 6). The solid fraction decrease is quite linear. The
mean transverse velocity (along Oy) is zero. The mean longitudinal velocity (along
Ox) increases with height with a non-dimensional gradient about 1. At the bead
bed, the slip velocity is rather low. The agitation due to the numerous collisions
generates granular temperature. The granular temperature increases as a function of
the height. The order of magnitude of the fluctuating velocity, given by its square
root, is significant with respect to the mean velocity. Note that these profiles are very
different from the case of a simple shear flow.

The main experimental studies of the collisional regime have been performed
by Drake (1991), and Ahn et al. (1991). In Drake’s study, the flow geometry is
two-dimensional. Only two quantitative analysis of flows were performed, with a
much larger inclination than here, which may have increased extraneous effects
(aerodynamic and walls). The main difference between the profiles measured by
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of granular temperature T ∗ (θ = 22◦, Q ' 1100 particles per second, stuck-bead bed roughness).

Drake and those exhibited below lies in the granular temperature, which is rather
constant in Drake’s study. The qualitative agreement is better with the study of Ahn
et al. (1991), even for the granular temperature. However, we must recall that in this
case the flow geometry is three-dimensional, and the measurements have been done
at the walls.

4.2. Kinetic theory assumptions – velocity distribution

Before presenting some results for velocity distribution, let us examine the basic
assumptions of the kinetic theory given previously, namely the assumptions of binary
collisions, of uncorrelated velocities and of equilibrium state. It is hopped that the
first two are globally satisfied (except in the first layers near the bed), even though
this is difficult to prove because it is not possible to identify the collision moment
with enough precision. But the third assumption can be examined, because we have
access to the kinematics of the flows.

4.2.1. General expression for the velocity distribution

The velocity distribution function f(r, c) is a central quantity in any kinetic theory,
on which is based the calculation of the transport coefficients (Reif 1965). A flowing
granular material is a non-equilibrium and dissipative medium, showing gradients
of solid fraction, velocity and temperature. Let us examine the deviation of this
distribution function from the Maxwellian equilibrium case.

This distribution function has been studied previously in vibrated grain experiments
(Warr, Huntley & Jacques 1995), and numerical simulations (Knight & Woodcock
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1996). Figure 7 shows our measurement of the distribution functions for the longi-
tudinal and transverse velocity components at different distances y above the bead
bed, inside the layers used to measure the structural and kinematic mean quantities.
These distributions are defined as

g(y, cx) =
1

ν(y)

∫
f(r, c) dx dcy, (4.1)

g(y, cy) =
1

ν(y)

∫
f(r, c) dx dcx. (4.2)

At first sight, those distribution functions are nearly Maxwellian, as predicted by the
theory. This confirms the observations of Drake (1991) performed in the same solid
fraction range. Nevertheless, small deviations from the equilibrium distribution are
perceptible. It seems that the distributions are not strictly symmetric and exhibit a
peak sharper than a Gaussian one. The distributions measured by Ahn et al. (1991)
and Warr, Jacques & Huntley (1994) have the same characteristics.

4.2.2. Anisotropy and asymmetry of the distribution function

The variance of the velocity distribution measures the granular temperature. We
note strong anisotropy between the distributions of the two velocity components.
The order of magnitude of this anisotropy has been estimated in flows on various
rough beds (figure 8). In spite of the strong scatter of the experimental data, we
note that the granular temperature in the direction of the flow is greater than the
granular temperature in the transverse direction. The ratio T ∗y /T ∗x is about 0.55 ± 0.1,
independent of the value of the solid fraction. It is also independent of the rough
bed nature. Drake (1991) also reports that the measured velocity distributions are
anisotropic except close to the rough bed. In this case the ratio between the transverse
granular temperature and the longitudinal granular temperature amounts to 0.65.
Similar anisotropic quasi-Maxwellian distributions have already been observed in
numerical simulations of vibrated grains (Knight & Woodcock 1996).

This anisotropy was first revealed by numerical simulations of simple sheared
granular media (Campbell & Brennen 1985; Campbell & Gong 1986; Walton &
Braun 1986b), on account of a difference between the longitudinal and transverse
components of the normal stress, which decreased with the restitution coefficient and
solid fraction.

According to Campbell (1989), this anisotropy must be connected to the two modes
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of granular temperature generation: at high solid fractions, collisions lead to isotropic
transfer of momentum; at low solid fractions, the kinetic transport of particles, without
collisions, generates a fluctuating velocity perpendicular to the velocity gradient.
Unlike the collisional temperature, the kinetic temperature is anisotropic because
only the component parallel to the velocity gradient is affected by this mechanism.
In contrast with this mechanism, our experimental measurements show that the
longitudinal granular temperature is greater than the transverse one, but that the
ratio does not depend on the solid fraction. We have not found any satisfactory
explanation for this discrepancy, except for the possible influence of the wall.

In order to quantify the asymmetry of the distribution function, which is clear
for the transverse velocity, the ratio between the mean longitudinal velocity of the
ascending particles (cy > 0, ↑) and the descending particles (cy < 0, ↓) has been
calculated (see Appendix D). The ratio u↑/u↓ between the mean velocity of ascending
particles and the mean velocity of descending particles is shown in figure 9. It is
equal to 0.85, roughly constant in terms of the solid fraction, and is independent
of the nature of the rough bed. This difference between ascending and descending
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particles is obviously due to gravity. Owing to gravity, the particles are accelerated
or decelerated between two successive collisions, according to the direction of their
velocity. This asymmetry will be calculated in § 5.2.

4.3. Identification of the constitutive law

Measuring the constitutive law still remains an experimental challenge. In the fol-
lowing, the three elementary functions f1(ν), f2(ν) and F(ν) are determined using the
solid fraction, velocity and granular temperature profiles measured experimentally. In
the subsequent analysis, we do not take into account the experimental points corre-
sponding to a distance less than 3 diameters from the bed, where an organization of
the beads in layers is observed.

4.3.1. Radial distribution function

Figure 10 shows an experimental determination of the radial distribution function
g0(ν), measured according to the calculation given in Appendix C. The experimental
data used here come from flows with various characteristics (inclination angles,
particle fluxes and roughness of the bed). We have not observed a dependence of
the radial distribution function on the velocity gradient which is predicted by some
theories (Jenkins & Savage 1983; Campbell & Brennen 1985). The experimental data
agree much better with the expression (3.8) given by Verlet & Levesque (1982) than
with the expression (3.9). However, there remain discrepancies, especially at high solid
fractions, which we suspect to be due to the organization in layers. In the following,
the expression (3.8) will be used.

4.3.2. Function F(ν)

The efficiency of the shear in generating granular temperature is measured by the
function F(ν), which was defined in (3.12):

F(ν) =

(
du∗

dy∗

)
/
(

tan θ T ∗1/2
)
. (4.3)

Figure 11(a) shows the experimental measurement of this function. The points
are calculated using the experimental values of solid fraction, granular temperature,
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velocity gradient and plane inclination, and come from flows performed at different
inclination angles, particle fluxes and roughness of the bed. They are scattered along
a reasonably well-defined underlying curve. Therefore, there is a unique relation
between the velocity gradient and the square root of granular temperature. Moreover,
this relation is not dependent on the nature of the two rough beds. When the solid
fraction is low, the granular temperature varies in a linear manner with the velocity
gradient, since the flows are highly sheared and the collision rate is low. On the other
hand, the function F saturates for a solid fraction higher than 0.4 because the collision
rate, which is roughly proportional to the solid fraction, increases whereas the velocity
gradient remains constant. The agreement between the theoretical prediction and the
experimental data is qualitatively good. For low solid fractions, the discrepancies are
within experimental errors, but for higher solid fractions, the theory overestimates the
function F by about 30%. The experimental measurement of Ahn et al. (1991), even
though very noisy, is also lower than the theoretical prediction. The function F has
also been measured in numerical simulations of simple shear flows. The agreement
with the prediction of the kinetic theory was only qualitative in the study of Campbell
& Gong (1986), but quantitatively correct in the study of Walton & Braun (1986a).

Since the granular temperature is anisotropic, we have calculated the function F
using the experimentally measured granular temperatures Tx, Ty and the average
T = (Tx + Ty)/2. The high anisotropy leads to a variation by a factor 2. The better
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agreement is obtained with Ty , but even in this case the function F remains lower
than the theoretical prediction. So we conclude that the discrepancies between the
theoretical and experimental Bagnold’s relations cannot be explained by the granular
temperature anisotropy.

4.3.3. Pressure and viscous terms

Using the momentum balance equation projected along the direction normal to
the plane (3.11), the function f1(ν) can be calculated once the solid fraction and
granular temperature profiles are known. We have used the experimental profiles
of solid fraction and granular temperature, in flows at different inclination angles,
particle fluxes and roughness of the bed. However, we have made the following
simplifying assumptions: in the collisional region, the solid fraction and granular
temperature gradients have been considered constant. In the dilute kinetic region, as
will be described in § 5.1, the solid fraction was supposed to vary exponentially and
the granular temperature to be constant. We have also assumed that the function f1

vanishes when the solid fraction tends to 0. The function f1 could then be calculated
by solving the differential equation (3.11), and is shown in figure 11(b). Like F ,
the function f1 does not depend on the nature of the rough bed. Agreement with
the function f1 estimated by Jenkins & Richman (1985) is very good, except at
high solid fraction. The pressure term (and not the elementary function f1) has also
been measured in the numerical simulations of simple shear flows by Walton & Braun
(1986a), and the agreement with the prediction of the kinetic theory was quantitatively
correct.

The function f2 can be calculated, once the functions f1 and F are known, using the
relation F(ν) = f1/f2, and it is shown in figure 11(c). It shows the same discrepancy
with the theoretical curve as the function F . This discrepancy may be due to the
friction between particles during the collisions which is not taken into account by
the theory. The numerical simulations of Walton & Braun (1986b), which included
the rotation of the particles, showed that the viscosity of a simply sheared granular
medium increases with the friction coefficient of the particles, when the solid fraction
is greater than 0.2. Moreover, they noticed that the pressure is less affected by the
friction coefficient, as observed here.

The dependence on solid fraction of the pressure and viscosity, as predicted by
the kinetic theory of Jenkins & Richman (1985), has been measured experimentally.
The agreement is good for the pressure term, but the viscosity coefficient is smaller,
possibly because of the effects generated by the friction between particles during the
collisions. Three other functions, f3, f4 and f5, are necessary to quantify a collisional
granular flow. It may be shown that the contribution associated with f4 always
remain very small (Adda 1996). The two other functions appear together in the
energy equation (3.3), so that it is not possible to identify them separately in the
inclined plane geometry. Apart from numerical simulations, we propose the following
experiments to measure the functions f3 and f5. First, the rate of energy dissipation
could be measured directly in a simple plane shear flow geometry where the granular
temperature is constant. Then the flux of fluctuation kinetic energy could be measured
in a vibrated grains experiment, where the average velocity is nil.

4.4. Comparison between experimental and theoretical profiles

We now compare profiles from experiment and theory directly. The theoretical profiles
are obtained by solving the system (3.11)–(3.13). This system is first solved by
determining ν and T ∗ using (3.11) and (3.13) and then calculating u∗ by integrating
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(3.12). The method developed by Ahn et al. (1992) has been used. Equations (3.11)
and (3.13) are solved by a fourth-order Runge–Kutta method and a shooting method
on the derivative of the granular temperature at the bed. Four boundary conditions
are needed: we fix the values of the solid fraction, mean velocity and granular
temperature, taking experimental values measured at the bed. The derivative of
granular temperature is forced to vanish at infinity, which ensures the nullity of
the stresses and the flux of fluctuation kinetic energy at the free surface. This last
condition will be justified in § 5.1. We stress that the two parameters in the model
(the restitution coefficient e and the radial distribution function at contact g0(ν)) are
determined experimentally. The sensitivity of the numerical solutions to these two
quantities has been studied and shown to be small small (Adda 1996).

Figure 12 shows a typical comparison between the experimental and the theoretical
profiles of solid fraction, mean velocity and granular temperature, for an inclination
of 21◦ and a stuck-bead bed. Consider first the theoretical solutions obtained when
integrating the equations from the bottom of the bed. The theoretical profiles differ
a great deal from the experimental data. The main discrepancy lies in the granular
temperature: the theoretical profile is almost constant whereas the experimental
profile increases linearly and saturates near the surface. The theoretical solid fraction
profile is also very different from the experimental profile, which is substantially
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underestimated. However, as expected from the measurement of the function F(ν), the
value of the velocity gradient close to the bead bed has the correct order of magnitude.
Nevertheless, the theoretical velocity becomes constant for a height that is far too low.
These remarks remain true for comparisons performed at other inclination angles.

On the basis of these observations, the system (3.11)–(3.13) may be questioned. In
order to identify the origin of the discrepancy, a series of tests was performed.

First of all, the experimental expression for f2 was used in place of the theoretical
expression. The effect of this change is almost invisible on the solid fraction and
the granular temperature profiles, and it remains very weak on the velocity profiles,
where the viscosity is proportional to f2. So the observed discrepancies between the
experimental and theoretical data do not come from the function f2, and in the
following, the theoretical expression for the function f2 will be used.

A second test was performed. We suspect that the kinetic theory becomes invalid
near the bead bed where the structuring of the particles may contradict the assump-
tions of the theory. When integrating the equations from a height of 2 diameters,
the theoretical profiles are very different and the comparison with the experimental
data is much better. The order of magnitude of the solid fraction, mean velocity
and granular temperature is now satisfactory. This shows that the organization of
the grains near the rough bed has a considerable influence on the whole flow. This
confirms the inadequacy of the theory near the bed roughness.

However the solid fraction and granular temperature gradients still remain too
high. The solid fraction gradient is given by (3.11). Since the function f1 is in
excellent agreement with its experimental estimation, we suspect that the discrepancy
comes from the granular temperature gradient itself, which is given by the energy
equation (3.13). The shear work term should be correct because only the function
f2 occurs. On the other hand, the flux of fluctuation kinetic energy and the rate
of energy dissipation may be suspected, but since the functions f3 and f5 have not
been identified, it is not possible to conclude if the difference comes from the energy
equation (3.13). In the future, it would be interesting to study two influences which are
not taken into account here : the friction coefficient (particle rotation and dissipation)
and the correlations of the velocities.

5. Kinetic regime
As described in § 3 the kinetic theory distinguishes the kinetic contribution, which

takes the transfer of momentum and fluctuating kinetic energy between two collisions
into account, and which dominates the collisional contribution for low solid fraction.
In a two-dimensional geometry, the transition occurs at a solid fraction of about 0.29
(Walton & Braun 1986b; Campbell & Gong 1986). This value is also obtained by
Jenkins & Hanes (1993) from a momentum balance taken in the transition region
between the collisional and kinetic regimes. Another estimation is a solid fraction of
about 0.2, a value for which the mean distance between the particles is equal to 1
diameter.

In our experiment, we are not able to distinguish the kinetic and collisional
contributions. However, as shown in figure 13, it is possible to distinguish two regions
in the profiles. In the lower collisional region, the quantities are roughly linear, as
has been shown before. Above a height of about 8 diameters, the solid fraction no
longer decreases in a linear manner, and the velocity and the granular temperature
tend to saturate at a maximum value at the top of the flow. The transition between
these two regions usually occurs at a solid fraction of about 0.15, a lower value than
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Figure 13. Kinetic regime: (a) profile of solid fraction ν, (b) profile of velocity u∗, (c) profile
of granular temperature T ∗. Comparison between experimental measurements ( e) and theoretical
predictions (——). (θ = 23◦, Q ' 1100 particles per second, e = 0.95).

the previous estimation. We think that the higher region corresponds to true ballistic
trajectories, that is to say the dilute kinetic regime.

The study of this regime is necessary to define realistic boundary conditions at
the surface of the flows. Because of the very low solid fraction in this regime, the
number of images on which the average is calculated has been increased to improve
the statistics. Note that the boundary conditions which have been used before to solve
the balance equations of the kinetic theory, and which assume that the derivative of
the granular temperature vanishes at the top of the flow, are thus realistic with regard
to the experimental results.

5.1. Comparison of experiment and theory

We now compare the experimental profiles with the theoretical profiles in the kinetic
regime. In order to obtain analytical solutions, we take the asymptotic form of the
balance equation, when the solid fraction tends to zero. In this case, the three balance
equations (3.11)–(3.13) become (with e ' 1)

dν

dy∗
= − ν

T ∗

(
1 +

dT ∗

dy∗

)
, (5.1)

du∗

dy∗
=

8

π1/2
ν T ∗1/2 tan θ, (5.2)
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d2T ∗

dy∗2
= − 1

2T ∗

(
dT ∗

dy∗

)2

. (5.3)

Equation (5.3) has two solutions

T ∗ = (Ay∗ + B)2/3, (5.4)

T ∗ = T ∗0 . (5.5)

Only the second solution is acceptable because the granular temperature cannot
diverge at the free surface. The solid fraction and velocity are then deduced

ν∗ = ν0 exp

(
−y

∗ − y∗0
T ∗0

)
, (5.6)

u∗ = u∗0 +
8

π1/2
ν0 T

∗ 3/2
0 tan θ

(
1− exp

(
− y∗ − y∗0

T ∗0

))
. (5.7)

Figure 13 compares the theoretical profiles (5.5)–(5.7) with the experimental profiles.
Figure 14 shows that the solid fraction variation is exponential near the top of the
flow. The granular temperature T ∗0 is deduced from logarithmic plotting of the solid
fraction profile as a function of the height. It reaches 5.8, a value which agrees
well with the measured granular temperature. Also, the comparison between the solid
fraction and velocity profiles seems correct, even in a quantitative way. The asymptotic
form of the kinetic theory therefore describes well the dilute region at the top of the
flows.

However, the kinetic theory which has been considered in the previous comparison
postulates that the velocity distribution is isotropic and symmetrical. This is not the
case in this region of the flow. This anisotropy and asymmetry are also noticeable on
the velocity and granular temperature profiles. Figure 15 shows that the velocity of
descending particles (↓) is higher than the velocity of ascending particles (↑). Also, the
granular temperature along the flow direction is higher than in the direction normal
to the rough bed. Possible explanations of this anisotropy have been given before.
For a very dilute granular medium, the theory of Jenkins & Richman (1988) predicts
a difference between the components of the normal stress, but the theoretical value
(0.9) is much larger than the experimental one (0.55).
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5.2. Estimation of the asymmetry

A simple model has been developed to estimate the order of magnitude of the
asymmetry. We consider a granular flow, which is mainly collisional below the height
y0 and ballistic above. At the transition height y0, some of the particles are thrown
out by the collisions at the top. Then they follow a parabolic trajectory, without any
collision, and go back to the collisional region at the altitude y0.

Following these assumptions, the difference between the mean longitudinal veloc-
ities of the descending particles u ∗↓ and the ascending particles u ∗↑ is calculated in
Appendix D

u ∗↓ − u ∗↑ = 2 tan θ (2T ∗y /π)1/2. (5.8)

The asymmetry of the longitudinal velocity thus depends on the transverse gran-
ular temperature. The order of magnitude of this prediction agrees well with the
experimental measurement (figure 15). The fully ballistic model gives a good order of
magnitude of the velocity asymmetry in the kinetic region. Surprisingly, this model
holds for high solid fraction whereas the assumptions are no longer justified.

6. Conclusion
We have presented an experimental study of the flow of a slightly inelastic granular

material down a rough inclined plane. The two-dimensional geometry of the channel
and the double flash lighting method allow detailed and complete measurement of
the kinematics and structure of the flows. Aerodynamic and electrostatic effects have
been shown to be small and the influence of the walls has been estimated. We have
determined the range of inclination and particle flux for which the flows are stationary
and uniform. These flows are collisional, with a certain local order in the first dense
layers near the bed, and very dilute at the free surface. The characteristic profiles of
solid fraction, mean velocity and granular temperature have been measured.

These experimental results have been compared with the predictions of a kinetic
theory for monodisperse, slightly inelastic and smooth spheres. Velocity distributions
are quasi-Maxwellian. A simple relation between the velocity gradient and the granular
temperature has been observed. The dependences on solid fraction of the pressure and
viscosity have been measured. The agreement is good for the pressure term, but the
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viscosity experimentally measured is slightly larger than the theoretical prediction,
possibly because of the friction between beads. The comparison of the profiles
indicates that the kinetic theory does not work near the bed, probably because of
the organization in layers of the flow. Even inside the collisional region there are
significant discrepancies, whose origin remains unclear. A specific study of the dilute
kinetic regime has been carried out. The asymptotic solution of the kinetic theory at
low solid fractions agrees well with the experimental observations. A fully ballistic
model predicts the order of magnitude of the velocity asymmetry.

Even for such a simple system, there remain important questions. On the theoretical
side, an estimation of the influence of the friction between grains is required. It is also
necessary to take into account the structuring of the granular flow and the velocity
correlations which occur near the bed, in order to get a better formulation of the
boundary conditions. On the experimental side, it would be helpful to measure the
rotation of the particles, the flux of agitation and the rate of energy dissipation inside
the flow. It would also be interesting to vary the dissipation at the bed and the friction
between grains. These aims are difficult experimental challenges, but should be more
easily tackled by numerical simulations. Such a combination of theory, experiment
and simulation is necessary for a better understanding of granular flows.

This work was supported in part by the Ecole Nationale des Ponts et Chaussées.
We would like to acknowledge the help of Fréderic Adda in the numerical solving
of the kinetic theory equations. We also acknowledge useful discussions with Yann
Limon-Duparcmeur, Jacques Duran and Jim Jenkins.

Appendix A. Wall friction force
Between two collisions of grains, the momentum balance of a grain in the flow is

mγ = mg+ Ff,

where Ff is the mean friction force exerted by the walls on the grain. This force is
related to the average variation of the tangential component of the momentum pt
generated by the collisions at the wall. It may be expressed as

Ff =
∆pt
τ
,

with τ the average time between two collisions, given by τ = σ/vn, σ being the
extra-spacing between the walls and vn being the velocity normal to the wall. Let us
estimate ∆pt by writing the momentum variation during a collision

m(v+
n − v−n ) = Pn,

m(v+
t − v−t ) = P t.

vt is the tangential velocity at the wall, the superscripts + and − respectively denote
pre- and post-collision quantities, and Pn and Pt are the normal and tangential
impulses. Since σ is much smaller than D, the collisions between the grains and the
wall occur at very low incidences. Considering then Newton’s law for the normal part
of the collision and Coulomb’s law for the frictional part:

Pn = −m(1 + ew)v−n ,
Pt = µwPn,
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with ew and µw the coefficient of normal restitution and friction between the grain
and the wall, respectively. The order of magnitude of vn can be deduced by writing
the collision laws between two grains and by assuming that their relative velocity
parallel to the wall is equal to the square root of the granular temperature

vn = (1 + e)
σ

D
T 1/2,

e is the coefficient of normal restitution between the grains. The factor σ/D comes
from the obliqueness of the collision. If we take the non-dimensional form of the
granular temperature T ∗ = T/gD, the expression for the wall friction force is

Ff = m(1 + ew) (1 + e)2 µw
σ

D
gT ∗ t,

where t is the unit vector directed in the opposite direction to the mean velocity of
the flow.

Appendix B. Expression for the functions fi and Fi
Expression for the functions fi (Jenkins & Richman 1985) are

f1(ν) = ν + 2rν2g0(ν),

f2(ν) =
π1/2

4(5− 3r)

[
1

g0(ν)
+ r(3r − 1)ν +

r

π

[
3πr2 − 2 (π+ 6) + 20

]
ν2g0(ν)

]
,

f3(ν) =
π1/2

r(17− 15r)

[
1

g0(ν)
+ 3r

(
2r2 − 3

2
r + 1

2

)
ν

+r2

[
9r2 −

(
30

π
+

27

4

)
r +

34

π

]
ν2g0(ν)

]
,

f4(ν) =
3π1/2(2r − 1)(r − 1)

2(17− 15r)

[
1

νg0(ν)
+

3r

2

]
d

dν

(
ν2g0(ν)

)
,

f5(ν) =
16r(1− r)
π1/2

ν2g0(ν),

with r = (1 + e)/2.
Expression for the functions Fi are

F1(ν) =
1

f′1
2(f1f4 − f′1f3)

,

F2(ν) = f′1
3

(
f2

1

f2

tan2 θ − f5

)
,

F3(ν) = 1
2
f′1

3
f3 − f1f

′
1

2
f′3 + 1

2
f1f

′
1

2
f4 + f2

1f
′
1f
′
4 − f2

1f
′′
1 f4,

F4(ν) = f1f
′
1f4 + (2f1f

′
1f
′
4 − 2f1f

′′
1 f4 − f′12

f′3 + 1
2
f′1

2
f4) ν,

F5(ν) = f′1f4ν + (f′1f
′
4 − f ′′1 f4) ν

2,

with f′i = dfi/dν.
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Appendix C. Determination of the radial distribution function
We consider the flow of N spheres or disks restricted to a plane (position ri,

diameter D, area Sp). The definition of the pair correlation function is

g(r1, r2) =
n(2)(r1, r2)

n(r1) n(r2)
,

where n(r) is the number density whose expression is

n(r) =

N∑
i=1

δ(r − ri).

The density n(2) is defined as

n(2)(r1, r2) =
∑
i,j

δ(r1 − ri) δ(r12 − rij),

with r12 = r1 − r2 and rij = ri − rj . n(2)(r1, r2) 6= n(r1)n(r2) because of the correlation
of positions of the particles.

Definition of the radial distribution function in the non-uniform case

We consider the case where the flow is uniform in the direction x (over a length L)
but non-uniform in the direction y. The expression for the number density is

n(r) =
1

L

∑
i

δ(y − yi) =
1

L
n(y)

and

n(2)(y1, r2) =
1

L

∑
i,j

δ(y − yi) δ(r12 − rij).

The radial distribution function g(y, r) will then depend on the position y. Using
the polar coordinates (α, r) where rα = r nα, we calculate the average over the angle α,

g(y, r) =
L

n(y)

N∑
i=1

δ(y − yi) 1

2π

∫ 2π

0

∑
j δ(rα − rij)

n(y + r sin α)
dα.

We introduce the number of particles dNi(r, α) around a particle i in the polar
differential surface element r dr dα

dNi(r, α) =
∑
j

δ(rα − rij) r dr dα,

so that

g(y, r) dr =
L

2πrn(y)

N∑
i=1

δ(y − yi)
∫ 2π

0

dNi(r, α)

n(y + r sin α)
.

We now define the radial distribution function gε in a thin layer ε around y ([y −
ε/2, y + ε/2]) along the direction x. We define Iε the indicator function of the layer,
equal to 1 inside the layer, and 0 outside. Averaging over the width of the layer, the
previous expression becomes

gε(y, r) dr =
L

2πrNε

N∑
i=1

Iε(yi)

∫ 2π

0

dNi(r, α)

n(y + r sin α)
.
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Nε = n(y)ε is the number of particles in the layer ε. The number density and the solid
fraction are related by

n(y) =
L

Sp
ν(y).

Using the indicator function I[r,r+dr] of the circular shell [r, r + dr]∫ 2π

0

dNi(r, α)

ν(y + r sin α)
=

N∑
j=1

I[r,r+dr](rij)

ν(yj)
.

The expression for the radial distribution function is then

gε(y, r) dr =
Sp

2πr

1

Nε

N∑
i=1

Iε(yi)

N∑
j=1

I[r,r+dr](rij)

ν(yj)
.

The value gε(y, D), for the height y where the solid fraction is equal to ν, gives the
radial distribution function at contact g0(ν).

Appendix D. Estimation of the asymmetry from a ballistic model
In the absence of collisions, the single-particle distribution function f(y, c) is con-

served along the trajectories, according to Liouville’s theorem (Reif 1965). We propose
an expression for f which is consistent with this conservation property. Let us con-
sider the flight of a particle in the ballistic region, above y0. At any height y > y0,
the velocity cy of the particle in the ascending phase (↑) is exactly the opposite of its
velocity cy in the descending phase (↓). In contrast to the velocity cx, the horizontal
velocity ch = cx + cy tan θ is conserved along the motion. This suggests an expression
for the distribution function at the altitude y0 which is valid equally for the ascending
and descending particles

f(y0, c) =
ν0

2 π (Th Ty)1/2
exp

(
− (ch − uh)2

2Th
− c2

y

2Ty

)
.

Th and Ty are the granular temperatures connected to the velocity fluctuations in the
horizontal direction and in the direction normal to the plane respectively. It is easy
to show that this distribution function is the solution of Boltzmann’s equation in the
absence of collisions. Using the conservation property of the distribution function
along the trajectories, we obtain its expression at any altitude y > y0

f(y, c) = f(y0, c) exp

(
−g cos θ (y − y0)

Ty

)
. (D 1)

Thanks to this expression, we are then able to calculate the mean quantities which
characterize the flow. Let us begin with the solid fraction

ν(y) =

∫
f(y, c) dc = ν0 exp

(
−g cos θ (y − y0)

Ty

)
.

The profile shape agrees with the solution predicted by the kinetic theory. Note that it
is the granular temperature Ty which is involved rather than the granular temperature
T = (Tx + Ty)/2 as in an isotropic case.
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We now calculate the mean velocity of the flow for the ascending and descending
particles. The expression for the mean velocity is

ui ↑ ↓(y) =
1

ν ↑ ↓(y)

∫
↑ ↓
ci f(y, c) dc,

so that

uy ↑ ↓ = ± (2Ty/π)1/2
,

uh ↑ ↓ = uh,

ux ↑ ↓ = uh ± tan θ
(
2Ty/π

)1/2
.
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